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EQUATIONS OF STATE FOR FOUR- 
AND FIVE-DIMENSIONAL HARD HYPERSPHERE 

FLUIDS 

J. AMOROS, J. R.  SOLANA and E. VILLAR 

Departamento de Fisica Aplicada, Universidad de Cantabria, Santander, Spain. 

( Receiiied 22 Sepremher 1988) 

Equations of state for the four- and five-dimensional hard hypersphere fluids have been obtained. Several 
procedures have been considered in each case: a )  adapting the method of Carnahan and Starling to  such 
dimensionalities; b) introducing Pade and Levin approximants suitable to the virial expansion and c) 
establishing a pole at a given density. In most cases, the results obtained agree satisfactorily with the 
available simulation data. The use of an additional fitting parameter furnishes nearly perfect agreement. 

K E Y  WORDS: Equations of state, hard hypersphere fluids, packing fraction. 

1 INTRODUCTION 

The knowledge of the behaviour of hard sphere systems plays an essential role in the 
context of the properties of matter at high pressures due to the predominance of the 
repulsive forces over attractive ones. In fact, the hard-sphere potential usually acts as 
the reference system in the context of perturbative theories used in the study of real 
fluids. With regard to the equation of state (EOS), this system does not require a 
complete knowledge of the radial distribution function but only its particular value 
when the spheres are in contact. Nevertheless, in spite of the evident simplicity of this 
system, there is no exact solution for the EOS at high or moderate densities (except in 
one dimension). In the low density range, one may appeal to the virial expansion for 
the pressure because the first coefficients have been evaluated. 

Obviously the dimensionality of the system is not restricted a priori. In fact, 
calculations of virial coefficients and the evaluation of critical exponents can deal with 
an arbitrary dimensionality. Notwithstanding, for dimensionalities greater than five, 
the lack of information concerning the numerical simulation or other type of 
experimental data prevents the verification of the results. 

The objective of the present work is to give simple algebraic EOS which represent 
the behaviour of the hard hyperspheres system in four and five dimensions for the 
density range which allows experimental verification to be performed by means of 
numerical simulation. This range extends to practically the whole stable fluid phase. 

This objective is attained by making use of various techniques which have shown 
their utility in the context of inferior dimensionalities. The results and their implica- 
tions are given in the next sections. 
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2 EMPIRICAL EQUATION OF STATE 

The use of empirical EOS is of great importance in physical chemistry and chemical 
engineering. They appear in the domain of real fluids and in their most representative 
models. Such equations represent an interesting alternative to those deduced from 
formal theories. Their interest is evident because the Percus-Yevick equation' has not 
been solved analytically for the even values of dimensionality including the hard disk 
system ( d  = 2). 

The virial expansion: 

= 1 + C B i y i - '  
P V  P Z = - -  - 

N k T -  pkT i =  2 

is nearly always the starting point for determining the EOS. Here, p = N/V is the 
number density of particles and y is the packing fraction, i.e. the ratio between the 
geometric volume and the volume of the system. In general y may be expressed as: 

where ug is the volume of a d-dimensional hard hypersphere, t~ its diameter and 
p* = N a d / V  the reduced density. 

Unfortunately, the number of known virial coefficients is limited even for the 
conventional cases d = 2,3. The situation is more difficult for the higher dimensionali- 
ties. For instance, only four coefficients are known for d = 42-6 and one coefficient 
more for d = 52*3*5-7. With this truncated virial expansion we have calculated Z by 
means of Eq. (1 )  and the results appear in Tables 1 and 2, together with the only, to 
our knowledge, available simulation results'. 

A substantial improvement in three dimensions is due to Carnahan and Starlingg. 
In their formulation, the known virial coefficients are approximated by the nearest 
integer number, obtaining a recurrence formula for reproducting them. Then, they 
postulate that this relation is fulfilled for every coefficient and they sum the series so 
obtained. For hard spheres (d = 3), the result is: 

(1 + Y + Y 2  - Y 3 )  
(1 - Y ) 3  

Z =  

Table 1 Equation of state for four-dimensional hard hypersphere fluid. 

P* z 

simul. virial Eq. ( 6 )  Eq. ( 8 )  Eq. (11) Eq. (13) Eq. (15)  

0.20 1.637 1.635 1.636 1.636 1.637 1.637 1.637 
0.40 2.670 2.626 2.660 2.663 2.668 2.669 2.667 
0.60 4.335 4.081 4.300 4.321 4.326 4.331 4.332 
0.80 7.038 6.1 10 6.934 7.0 19 7.005 7.027 7.01 1 
0.90 8.955 7.374 8.809 8.964 8.923 8.966 8.955 
0.95 10.147 8.074 9.932 10.138 10.078 10.136 10.133 
1.00 11.458 8.823 11.204 11.473 11.388 1 1.466 11.478 

(3) 
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Table 2 Equation of state for five dimensional hard hypershpere fluid. 

P* 

0.20 1.653 1.653 1.653 1.653 1.653 1.653 1.653 
0.40 2.624 2.617 2.621 2.6 19 2.621 2.619 2.618 
0.60 4.008 3.997 4.027 4.0 14 4.03 1 4.0 14 4.0 10 
0.80 5.997 5.928 6.061 5.997 6.085 6.000 5.986 
1.00 8.748 8.570 9.010 8.782 9.103 8.787 8.766 
1.10 10.523 10.215 10.956 10.558 11.123 10.561 10.549 
1.15 11.589 11.130 12.077 11.560 12.297 11.558 11.560 
1.18 12.217 11.710 12.803 12.199 13.061 12.195 12.207 

The validity of this expression is well supported by its excellent agreement with the 
better numerical simulation data". 

In spite of the small number of available virial coefficients we have applied this 
procedure to the case of four and five dimensions, obtaining that those virial 
coefficients can be approximated by: 

(4) Bi = 1 0 3 '  - 28.51' + 23 i = 2, 3 ,4 , .  .. ford = 4 

Bi = 59i3 - 476i2 + 1349i - 1250 i = 2, 3,4, ... ford = 5 ( 5 )  

Thus, from the sum of the virial series ( I ) ,  

for d = 4 ( 1  + 5y + 1 ly2 + 4y3) 
( 1  - Y)3 

Z =  

( 1  + 12y + 48y2 - 26y3 + 319y4) z=- for d = 5 
( 1  - YI4 

(7) 

whose results also appear in Tables 1 and 2. 
The agreement is satisfactory, but an improvement is feasible without violating the 

spirit of the method if one adds a higher order term to the numerators of (6) and (7) 
because this transformation doesn't modify the known virial coefficients, which are 
approximated by integers in the procedure. The corresponding coefficient is obtained 
by means of fitting the simulation data. The expressions obtained are: 

(8) Z =  - 

(9) 
( 1  + 12y + 48y2 - 26y3 + 3 1 9 ~ ~  - 9 2 3 . 1 0 ~ ~ )  z =  ~~~ ~~ 

The results are shown in Tables 1 and 2. A great improvement in the agreement is 
found. 

The procedure of Carnahan and Starling provides all the virial coefficients but 
approximates them with integers. This restriction can be removed if one uses the 

( 1  + 5y + 1 ly2 + 4y3 + 9 . 8 3 6 1 ~ ~ )  
( 1  - Y ) 3  

( 1  - Y)4 
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known exact virial coefficients. To do this, an available powerful method is that of 
Pade approximants”, which are ratios between two polynomials in the variable y 
whose coefficients are fixed by stipulating that the expansion of the approximant must 
reproduce the known virial coefficients. 

We have found that none of the possible conventional approximants improve the 
predictions of the virial expansion, contrary to the two- and three-dimensional 
c a ~ e s ~ ~ ” ~ .  This is probably due to the small number of known virial coefficients in this 
case. 

We have also tried more sophisticated approximants, such as those of Levin14*15 
and we have verified that the results only improve those of the truncated virial series 
in the tetradimensional case, although this improvement is not sufficiently satisfac- 
tory. 

On the other hand, based on the fact that many of the better known EOS for the 
hard spheres fluid have poles at y = 1, it is advantageous to consider Pade approxi- 
mants which fulfill this condition. This was suggested some years ago by Alder and 
Hoover16 and was also shown to be satisfactory for other hard body 

Moreover, all analytical solutions of the Percus-Yevick e q ~ a t i o n ’ ~ - ~ l  (d = I ,  3) 
and the scaled particle theory (SPT)22*23 (d = 1,2,3) have the factor (1 - Y ) ~ .  Thus, it 
seems reasonable that the EOS for d-dimensional hard hyperspheres should have the 
form: 

where the coefficients a, b, . . . I are fixed by identifying the expansion in powers of y 
with the virial expansion. This expression constitutes a particular case of Pade 
approximants. 

Applying this procedure to our case, we find the following equations for four and 
five dimensional hard hyperspheres: 

( 1  + 4y + 6 . 4 0 3 2 ~ ~  - 8.1049~’) z=- 
(1 - YI4 

(1 + 1 1 y + 36y2 - 7 4 . 4 4 ~ ~  + 347.1 3y4) z = -  
(1 - Y S  

The results obtained are shown in Tables 1 and 2. Again the accuracy of the results 
may be increased by adding to the numerator a term in the next power of y whose 
coefficient is fitted to the simulation data. The following expressions are obtained: 

(13) 

z=-- (14) 

( 1  + 4y + 6 . 4 0 3 2 ~ ~  - 8 . 1 0 4 9 ~ ~  + 1 . 9 7 3 9 ~ ~ )  z=- 

( 1  + 1 l y  + 36y2 - 7 4 . 4 4 ~ ~  + 3 4 7 . 1 3 ~ ~  - 1068.56~~)  
(1- YI4 

(1 - Y Y  

whose results also appear in Tables 1 and 2. 
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3 THE PRESSURE DIVERGENCE 

Any EOS that presents only one pole in the compressibility factor at y = 1 is in 
contradiction with the fact that i t  is impossible (except in one dimension) to pack 
spheres without the appearence of interstices among them. This fact suggests that the 
packing limit is that corresponding to the matter perfectly ordered in its crystalline 
state at the maximum packing density (regular close packing density). The corre- 
sponding packing ratio is perfectly defined in all dimensionsz4.’ ’. On the other hand, 
since the matter is disordered in the fluid state, another maximum packing density, 
called random close packing density or Bernal density26 has been proposed in this 
context for the hard sphere fluid. This density is lower than that corresponding to the 
crystalline solid. Both choices have been as the possible poles for the 
compressibility factor of the hard sphere fluid. Nevertheless, the asymptotic behaviour 
of the virial expansion for the hard sphere fluid2* seems to favour the first choice. 

Accepting the existence of a pole at regular close packing density, we propose the 
following EOS for hard hypersphere fluids: 

where y o  is the regular close packing ratio, whose value is d / 1 6  = 0.61685 in the 
tetradimensional case and 23‘27r2/60 = 0.46526 in the pentadimensional case. Logi- 
cally, this value decreases as the dimensionality increases. 

Equation (15) has only one fitting parameter C since the remaining parameters pi 
are fixed by virtue of their identification with those corresponding to the virial 
expansion. The upper limit of the sum is equal to the order of the highest known virial 
coefficients. In  our case, this value is 4 and 5 for four- and five-dimensional hard 
hyperspheres respectively. 

The proposed equation has a simple pole in the regular packing density and a 
multiple pole whose order is d - 1 for y = 1 in order to preserve the excellent features 
assigned to the empirical equations with the following values for the parameters: 

C = 36.300; f l z  = 1.5154; p3 = 21.891; p4 = 24.121 ford = 4 
C = 200.00; /I2 = 5.2532; p3 = 82.886; /j4 = 255.915; ,!I5 = 663.225 for d = 5 

The corresponding results are shown in Tables 1 and 2. We have verified that the 
attempt to increase the order of the first pole worsens the results appreciably. 

4 DISCUSSION 

From the analysis of Tables 1 and 2, one can see that the results obtained from the 
virial expansion are systematically lower than those of the simulation. This suggests 
that, at least, the first unknown virial coefficient must be positive, in agreement with 
the two- and three-dimensional cases. Also, the knowledge of an additional virial 
coefficient significantly improves the agreement when the dimensionality changes 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



124 J. AMOROS, J. R. SOLANA AND E. VILLAR 

from 4 to 5. In this latter case, the agreement is similar to that of the Carnahan- 
Starling type EOS. 

On the other hand, the results given by the Pade approximant with the pole y = 1, 
are rather different from the simulation data for d = 5, although they almost coincide 
with those obtained by Baus and Colot’ for the Percus-Yevick compressibility 
equation. Nevertheless, the introduction of a fitting parameter allows us to obtain 
practical coincidence with the simulation data. The knowledge of a greater number of 
virial coefficients would probably make this modification unnecessary. 

The introduction of a pole at  y = y o  also furnishes an excellent agreement with the 
simulation results. This is also the case for hard spheres (unpublished work) in the 
domain of the stable fluid phase, and specially in the metastable region29 where such 
an equation provides better agreement than an equation with a pole at y = 1 
exclusively. This situation will probably also be valid in the dimensionalities we are 
considering, but the lack of simulation data in such regions hinders its verification. 
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